AlHilli, M. M., Tran, C.-T., Langstraat, C. L., Martin, J. R., Weaver, A. L., McGree, M. E., Mariani, A., Cliby, W. A., & Bakkum-Gamez, J. N. (2018). Risk-scoring model for prediction of non-home discharge in epithelial ovarian cancer patients.
Journal of the American College of Surgeons,
226(5), 908–914.
https://doi.org/10.1016/j.jamcollsurg.2018.01.050
Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data.
ACM SIGKDD Explorations Newsletter,
6(1), 20–29.
https://doi.org/10.1145/1007730.1007735
Breiman, L. (2001). Random forests.
Machine Learning,
45(1), 5–32.
https://doi.org/10.1023/A:1010933404324
Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis.
Communications in Statistics — Theory and Methods,
3(1), 1–27.
https://doi.org/10.1080/03610927408827101
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002).
SMOTE: Synthetic minority over-sampling technique.
Journal of Artificial Intelligence Research,
16, 321–357.
https://doi.org/10.1613/jair.953
Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-1(2), 224–227.
https://doi.org/10.1109/TPAMI.1979.4766909
Fawcett, T. (2006). An introduction to
ROC analysis.
Pattern Recognition Letters,
27(8), 861–874.
https://doi.org/10.1016/j.patrec.2005.10.010
Fondo Nacional de Salud (FONASA). (2021).
Portal de datos abiertos FONASA.
https://datosabiertos.fonasa.cl/
Goic, A. (2015). The chilean health care system: The task ahead.
Revista Médica de Chile,
143(6), 774–786.
https://doi.org/10.4067/S0034-98872015000600011
Gower, J. C., & Legendre, P. (1986). Metric and euclidean properties of dissimilarity coefficients.
Journal of Classification,
3, 5–48.
https://doi.org/10.1007/BF01896809
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008).
ADASYN: Adaptive synthetic sampling approach for imbalanced learning.
Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IJCNN), 1322–1328.
https://doi.org/10.1109/IJCNN.2008.4633969
Hidalgo, C. A., Blumm, N., Barabási, A.-L., & Christakis, N. A. (2009b). A dynamic network approach for the study of human phenotypes.
PLoS Computational Biology,
5(4), e1000353.
https://doi.org/10.1371/journal.pcbi.1000353
Hidalgo, C. A., Blumm, N., Barabási, A.-L., & Christakis, N. A. (2009a). A dynamic network approach for the study of human phenotypes.
PLoS Computational Biology,
5(4), e1000353.
https://doi.org/10.1371/journal.pcbi.1000353
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013).
Applied logistic regression (3rd ed.). Wiley.
https://doi.org/10.1002/9781118548387
Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des alpes et du jura.
Bulletin de La Société Vaudoise Des Sciences Naturelles,
37, 547–579.
https://doi.org/10.5169/SEALS-266450
Legendre, P., & Legendre, L. (2012). Numerical ecology (3rd English ed.). Elsevier.
Lheureux, S., Gourley, C., Vergote, I., & Oza, A. M. (2019). Epithelial ovarian cancer.
The Lancet,
393(10177), 1240–1253.
https://doi.org/10.1016/S0140-6736(18)32552-2
Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion?
Journal of Classification,
31(3), 274–295.
https://doi.org/10.1007/s00357-014-9161-z
Quan, H., Li, B., Couris, C. M., Fushimi, K., Graham, P., Hider, P., Januel, J.-M., & Sundararajan, V. (2011). Updating and validating the charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries.
American Journal of Epidemiology,
173(6), 676–682.
https://doi.org/10.1093/aje/kwq433
Real, R., & Vargas, J. M. (1996). The probabilistic basis of jaccard’s index of similarity.
Systematic Biology,
45(3), 380–385.
https://doi.org/10.1093/sysbio/45.3.380
Roque, F. S., Jensen, P. B., Schmock, H., Dalgaard, M., Andreatta, M., Hansen, T., Søeby, K., Bredkjær, S., Juul, A., Werge, T., Jensen, L. J., & Brunak, S. (2011). Using electronic patient records to discover disease correlations and stratify patient cohorts.
PLoS Computational Biology,
7(8), e1002141.
https://doi.org/10.1371/journal.pcbi.1002141
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20, 53–65.
https://doi.org/10.1016/0377-0427(87)90125-7
Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets.
PLOS ONE,
10(3), e0118432.
https://doi.org/10.1371/journal.pone.0118432
Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution.
BMC Bioinformatics,
8, 25.
https://doi.org/10.1186/1471-2105-8-25
Tetsche, M. S., Dethlefsen, C., Pedersen, L., Sørensen, H. T., & Nørgaard, M. (2008). The impact of comorbidity and stage on ovarian cancer mortality: A nationwide danish cohort study.
BMC Cancer,
8, 31.
https://doi.org/10.1186/1471-2407-8-31
Tomek, I. (1976). Two modifications of
CNN.
IEEE Transactions on Systems, Man, and Cybernetics,
6(11), 769–772.
https://doi.org/10.1109/TSMC.1976.4309452
Torre, L. A., Trabert, B., DeSantis, C. E., Miller, K. D., Samimi, G., Runowicz, C. D., Gaudet, M. M., Jemal, A., & Siegel, R. L. (2018). Ovarian cancer statistics, 2018.
CA: A Cancer Journal for Clinicians,
68(4), 284–296.
https://doi.org/10.3322/caac.21456
Valderas, J. M., Starfield, B., Sibbald, B., Salisbury, C., & Roland, M. (2009). Defining comorbidity: Implications for understanding health and health services.
Annals of Family Medicine,
7(4), 357–363.
https://doi.org/10.1370/afm.983
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association,
58(301), 236–244.
https://doi.org/10.1080/01621459.1963.10500845